Activation of beta1-adrenoceptors excites striatal cholinergic interneurons through a cAMP-dependent, protein kinase-independent pathway.
نویسندگان
چکیده
The role of noradrenergic neurotransmission was analyzed in striatal cholinergic interneurons. Conventional intracellular and whole-cell patch-clamp recordings were made of cholinergic interneurons in rat brain slice preparations. Bath-applied noradrenaline (NA) (1-300 microm) dose-dependently induced both an increase in the spontaneous firing activity and a membrane depolarization of the recorded cells. In voltage-clamped neurons, an inward current was induced by NA. This effect was not prevented by alpha-adrenoceptor antagonists, whereas it was mimicked by the beta-adrenoceptor agonist isoproterenol and blocked by the beta1 antagonists propranolol and betaxolol. Interestingly, forskolin, activator of adenylate cyclase, mimicked and occluded the membrane depolarization obtained at saturating doses of both dopamine and NA. Accordingly, SQ22,536, a selective adenylate cyclase inhibitor, reduced the response to NA. Analysis of the reversal potential of the NA-induced current did not provide homogeneous results, indicating the involvement of multiple membrane conductances. Because cAMP is known to modulate Ih, the effects of ZD7288, a selective inhibitor of Ih current, were examined on the NA-induced membrane depolarization/inward current. ZD7288 mostly reduced the response to NA. However, both KT-5720 and H-89, selective protein kinase A (PKA) blockers, failed to prevent the excitatory action of NA. Likewise, calphostin C, antagonist of PKC, genistein, inhibitor of tyrosine kinase, and 8-Bromo-cGMP, blocker of PKG, did not affect the response to NA. Finally, double-labeling experiments combining beta1-adrenoceptor and choline acetyltransferase immunocytochemistry by means of confocal microscopy revealed a strong beta1-adrenoceptor labeling on cholinergic interneurons. We conclude that NA depolarizes striatal cholinergic interneurons via beta1-adrenoceptor activation, through a cAMP-dependent but PKA-independent mechanism.
منابع مشابه
Excitatory roles of protein kinase C in striatal cholinergic interneurons.
Protein kinase C (PKC) plays critical roles in neuronal activity and is widely expressed in striatal neurons. However, it is not clear how PKC activation regulates the excitability of striatal cholinergic interneurons. In the present study, we found that PKC activation significantly inhibited A-type potassium current (I(A)), but had no effect on delayed rectifier potassium currents. Consistentl...
متن کاملStimulation of nitric oxide-cGMP pathway excites striatal cholinergic interneurons via protein kinase G activation.
Conflicting data have been collected so far on the action of nitric oxide (NO) on cholinergic interneurons of the striatum. In the present in vitro electrophysiological study, we reported that intracellularly recorded striatal cholinergic interneurons are excited by both hydroxylamine and S-nitroso-N-acetylpenicillamine, two NO donors. This excitation persisted unchanged in the presence of glut...
متن کاملD2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway.
Dopamine has long been known to regulate the activity of striatal cholinergic interneurons and the release of acetylcholine. Yet, the cellular mechanisms by which this regulation occurs have not been elucidated. One way in which dopamine might act is by modulating voltage-dependent Ca2+ channels. To test this hypothesis, the impact of dopaminergic agonists on Ca2+ channels in neostriatal cholin...
متن کاملD2 Dopamine Receptors Reduce N-Type Ca Currents in Rat Neostriatal Cholinergic Interneurons Through a Membrane-Delimited, Protein-Kinase-C-Insensitive Pathway
Yan, Zhen, Wen-Jie Song, and D. James Surmeier. D2 dopamine dopamine (DA) (DeBoer et al. 1993; Di Chiara et al. 1994; receptors reduce N-type Ca currents in rat neostriatal cholinergic Lehman and Langer 1983; Stoof et al. 1982), it is unclear interneurons through a membrane-delimited, protein-kinase-C-insenhow this is accomplished. sitive pathway. J. Neurophysiol. 77: 1003–1015, 1997. Dopamine ...
متن کاملA beta1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction.
Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocyte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 12 شماره
صفحات -
تاریخ انتشار 2003